On automorphism groups of quasiprimitive 2-arc transitive graphs
نویسندگان
چکیده
منابع مشابه
On automorphism groups of quasiprimitive 2-arc transitive graphs
We characterize the automorphism groups of quasiprimitive 2-arc-transitive graphs of twisted wreath product type. This is a partial solution for a problem of Praeger regarding quasiprimitive 2-arc transitive graphs. The solution stimulates several further research problems regarding automorphism groups of edge-transitive Cayley graphs and digraphs.
متن کاملAUTOMORPHISM GROUPS OF SOME NON-TRANSITIVE GRAPHS
An Euclidean graph associated with a molecule is defined by a weighted graph with adjacency matrix M = [dij], where for ij, dij is the Euclidean distance between the nuclei i and j. In this matrix dii can be taken as zero if all the nuclei are equivalent. Otherwise, one may introduce different weights for distinct nuclei. Balaban introduced some monster graphs and then Randic computed complexit...
متن کاملA Family of Non-quasiprimitive Graphs Admitting a Quasiprimitive 2-arc Transitive Group Action
Let 0 be a simple graph and let G be a group of automorphisms of 0. The graph is (G, 2)-arc transitive if G is transitive on the set of the 2-arcs of 0. In this paper we construct a new family of (PSU(3, q2), 2)-arc transitive graphs 0 of valency 9 such that Aut0 = Z3.G, for some almost simple group G with socle PSU(3, q2). This gives a new infinite family of non-quasiprimitive almost simple gr...
متن کاملAll vertex-transitive locally-quasiprimitive graphs have a semiregular automorphism
The polycirculant conjecture states that every transitive 2-closed permutation group of degree at least two contains a nonidentity semiregular element, that is, a nontrivial permutation whose cycles all have the same length. This would imply that every vertex-transitive digraph with at least two vertices has a nonidentity semiregular automorphism. In this paper we make substantial progress on t...
متن کاملOn 2-arc-transitive Cayley Graphs of Dihedral Groups
Slovenija Abstract A partial extension of the results in 1], where 2-arc-transitive cir-culants are classiied, is given. It is proved that a 2-arc-transitive Cayley graph of a dihedral group is either a complete graph or a bi-partite graph.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebraic Combinatorics
سال: 2007
ISSN: 0925-9899,1572-9192
DOI: 10.1007/s10801-007-0101-4